
Jorgo Beenen
Project manager/engineer
DEKRA Certification B.V.

Pieter Verstraelen
Technical project leader

•

•

•

DEKRA Certification Group

Functional safety and software assessment

Jorgo Beenen (Jorgo.Beenen@dekra.com)

Introduction

Contents

What is Functional Safety?

Development of Functional safety

Functional safety examples

Functional safety standards

Hardware integrity

Software integrity (classification, measures, design process)

What is functional safety?

Safety is “Freedom from unacceptable risk“

Risk analysis:

Harm

To People or

To Property or

To Environment or

Harm

To People or

To Property or

To Environment or

And

Severity

Catastrophic

…..

Negligible

Likelihood

Frequent

…..

Incredible

Risk

Acceptable?

yes/no



safe/unsafe

What is functional safety?

What is basic safety?

Freedom from unacceptable risk caused by physical hazards (e.g. electric shock, fire, skin

burn or economic, environmental damage), achieved by physical construction, design,

instructions or training.

-Proven by evaluation of construction & safety tests.

Functional safety

Freedom from unacceptable risk that depends on an (electronic) function.

Loss of the function would lead to an unacceptable risk (hazardous situation).

-Proven by evaluation of function design, supported by physical tests to prove reliability of the

function (more later).

Development of functional safety

Traditional situation

Safety is provided by basic safety. Protection against hazards realized by electromechanical

components (fuses, TCO’s, etc), reliable due to physical properties, proven over time and by

compliance with safety standards. Electronic systems were mainly used to perform NSR (Non

Safety Relevant) functions, improving comfort and efficiency.

Rise of electronics providing FS

Nowadays, and still increasing, electronics are also used to perform SR (Safety Relevant)

functions. Electronics includes heavy computing power, reads multiple sensors and drives

various actuators to manage increasingly complex functionality. Typical washing machine uses

several µP, electronic controls, thousands of lines of software code. Latest trend is

connectivity to other internal/external devices or internet.

Functional safety applications

Electronics & software providing safety

found in:

- Door locks (ovens, washing machines)

- Thermal cut-outs, motor protectors

- Machinery & power tools

- Smoke / CO detectors

- Anti-intruder systems

- Medical devices

- Gas appliances

- Airplanes

- Self driving cars

- …

Functional safety - standards

Various product safety standards address FS as an essential part of the technical

requirements for the safety of products.

IEC 60730; IEC 60335; IEC 62841; IEC 62733, etc.

IEC 61508

Functional safety for
E/E/PE safety related

systems

ISO 26262
Functional safety in

Automotive
Electronics

IEC 60730

Electric controls in
domestic

environment

IEC 60335
Appliances for
household and

similar use

IEC 62304

Medical Devices

IEC 62841

Power tools, lawn &
garden equipment

ISO 13849

Safety related parts
of control systems

Functional safety - standards

Requirements in FS standards address

several aspects

As SR functions generally use combination of

technologies

- Overall system integrity

- Hardware integrity

- System software integrity (faulty hardware or

unexpected application software/sensor behavior)

- Application software integrity (user input,

sensors, communication, etc)

- Design process

- Compatibility with environment (EMC)

No. of aspects further discussed

Functional safety - hardware integrity

Approach 1: Assumption of random hardware failures

Individual components are considered to fail (one or two faults), independent of reliability or

complexity of component. Fault may be open/short but also ‘all possible output signals’.

Random faults are generally due to physical causes (e.g. thermal stress, ageing, corrosion,

etc) or productions flaws.

Redundancy (hardware), fault detection (self tests, hardware/software)

Approach 2: Calculation of probability of hardware failures

Statistical information resulting from testing and historical data about a type of fault for each

individual component. This data is used to calculate the average probability of a failure of the

system hardware, and hence the risk, associated with the occurrence of a fault.

High MTTF rated components, redundancy, fault detection (self tests)

Only components involved in SR functions are considered.

Functional safety - Software integrity

Can software do harm?

Functional safety – software classification

Software classification

Used throughout several product standards.

Originally from IEC 60730-1 (automatic electrical controls in domestic and public environment).

Based on function and severity of hazard the related software is classified.

Depending on classification, certain CPU faults are to be considered and measures to avoid

systematic software errors are to be taken.

Functional safety – software classification

Software class A

Control functions which are not intended to be relied upon for the safety of the application

Failure will not lead to hazardous situation. Software not involved in safety.

Software class B

Control functions which are intended to prevent an unsafe state of the application

Failure of the control function will not lead directly to a hazardous situation or the hazard is

limited.

Software class C

Control functions which are intended to prevent special hazards such as an explosion or

whose failure could directly cause a hazard in the application.

Functional safety – software measures

Example: Software class B, CPU faults

Test Fault

CPU register Stuck at

CPU program counter Stuck at

Interrupt handling No interrupt or too frequent interrupt

Clock Wrong frequency

Invariable memory Single bit faults

Variable memory DC fault

Addressing (memory) Stuck at

Internal data path Stuck at

Addressing Wrong address

External communication Hamming distance

Timing Wrong point in time

Input / output Open / short , misuse , unexpected,

A/D and D/A converter Open / short , misuse , unexpected,

Analog multiplexer Wrong addressing

Functional safety – software design process

Software development requirements, V-model

Pieter Verstraelen
Technical project leader

•

•

•

•

•

•

•

•

•

•

•

•

•

–

–

–

•

–

•

–

–

–

•

•

–

–

•

Door lock switch 2

Door lock switch 1

SRP I SRP L SRP O

MCU Class B

MCU Class A

Door close switch

Flip-Flop

Inverter power
enable 2

Flip-Flop

Inverter power
enable 1

Inverter power
enable 3

Category 2 Category 3

MCU Class B Unlock Enable 1

Unlock Enable 3

Speed sensor

SRP I SRP L SRP O

Flip-Flop

Flip-Flop Unlock Enable 2

Inverter motor
speed

Category 2 Category 3

Main MCU
Class A

MCU Class A

•

•

•

–

–

–

•

–

–

–

•

•

–

–

•

–

•

•

•

•

•

–

–

–

–

•

–

–

–

•

•

•

•

–

•

•

•

•

